Package: slowraker 0.1.1
slowraker: A Slow Version of the Rapid Automatic Keyword Extraction (RAKE) Algorithm
A mostly pure-R implementation of the RAKE algorithm (Rose, S., Engel, D., Cramer, N. and Cowley, W. (2010) <doi:10.1002/9780470689646.ch1>), which can be used to extract keywords from documents without any training data.
Authors:
slowraker_0.1.1.tar.gz
slowraker_0.1.1.zip(r-4.5)slowraker_0.1.1.zip(r-4.4)slowraker_0.1.1.zip(r-4.3)
slowraker_0.1.1.tgz(r-4.5-any)slowraker_0.1.1.tgz(r-4.4-any)slowraker_0.1.1.tgz(r-4.3-any)
slowraker_0.1.1.tar.gz(r-4.5-noble)slowraker_0.1.1.tar.gz(r-4.4-noble)
slowraker_0.1.1.tgz(r-4.4-emscripten)slowraker_0.1.1.tgz(r-4.3-emscripten)
slowraker.pdf |slowraker.html✨
slowraker/json (API)
# Install 'slowraker' in R: |
install.packages('slowraker', repos = c('https://crew102.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/crew102/slowraker/issues
- dog_pubs - Dog publications
On CRAN:slowraker-0.1.1(2017-11-02)
Last updated 6 months agofrom:294bb63410. Checks:4 OK, 4 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 01 2025 |
R-4.5-win | OK | Mar 01 2025 |
R-4.5-mac | OK | Mar 01 2025 |
R-4.5-linux | OK | Mar 01 2025 |
R-4.4-win | NOTE | Mar 01 2025 |
R-4.4-mac | NOTE | Mar 01 2025 |
R-4.3-win | NOTE | Mar 01 2025 |
R-4.3-mac | NOTE | Mar 01 2025 |
Exports:pos_tagsrbind_rakelistslowrakesmart_words
Dependencies:NLPopenNLPopenNLPdatarJavaSnowballC
Citation
To cite package ‘slowraker’ in publications use:
Baker C (2025). slowraker: A Slow Version of the Rapid Automatic Keyword Extraction (RAKE) Algorithm. R package version 0.1.1, https://github.com/crew102/slowraker.
Corresponding BibTeX entry:
@Manual{, title = {slowraker: A Slow Version of the Rapid Automatic Keyword Extraction (RAKE) Algorithm}, author = {Christopher Baker}, year = {2025}, note = {R package version 0.1.1}, url = {https://github.com/crew102/slowraker}, }
Readme and manuals
slowraker
A slow version of the Rapid Automatic Keyword Extraction (RAKE) algorithm
Installation
You can get the stable version from CRAN:
install.packages("slowraker")
Or the development version from GitHub:
if (!"devtools" %in% rownames(installed.packages()))
install.packages("devtools")
# devtools::install_github("crew102/slowraker")
install.packages("slowraker", repos = c('https://crew102.r-universe.dev', 'https://cloud.r-project.org'))
Basic usage
There is one main function in the slowraker
package - slowrake()
.
slowrake()
extracts keywords from a vector of documents using the RAKE
algorithm. This algorithm doesn’t require any training data, so it’s
super easy to use:
library(slowraker)
data("dog_pubs")
rakelist <- slowrake(txt = dog_pubs$abstract[1:5])
slowrake()
outputs a list of data frames. Each data frame contains the
keywords that were extracted for a given document:
rakelist
#>
#> # A rakelist containing 5 data frames:
#> $ :'data.frame': 61 obs. of 4 variables:
#> ..$ keyword:"assistance dog identification tags" ...
#> ..$ freq :1 1 ...
#> ..$ score :11 ...
#> ..$ stem :"assist dog identif tag" ...
#> $ :'data.frame': 90 obs. of 4 variables:
#> ..$ keyword:"current dog suitability assessments focus" ...
#> ..$ freq :1 1 ...
#> ..$ score :21 ...
#> ..$ stem :"current dog suitabl assess focu" ...
#> #...With 3 more data frames.
You can bind these data frames together using rbind_rakelist()
:
rakedf <- rbind_rakelist(rakelist, doc_id = dog_pubs$doi[1:5])
head(rakedf, 5)
#> doc_id keyword freq score
#> 1 10.1371/journal.pone.0132820 assistance dog identification tags 1 10.8
#> 2 10.1371/journal.pone.0132820 animal control facilities 1 9.0
#> 3 10.1371/journal.pone.0132820 emotional support animals 1 9.0
#> 4 10.1371/journal.pone.0132820 small body sizes 1 9.0
#> 5 10.1371/journal.pone.0132820 seemingly inappropriate dogs 1 7.9
#> stem
#> 1 assist dog identif tag
#> 2 anim control facil
#> 3 emot support anim
#> 4 small bodi size
#> 5 seemingli inappropri dog
Learning more
- To learn about how RAKE works as well as the basics of
slowrake()
, check out the “Getting started” vignette (vignette("getting-started")
). Frequently asked questions are answered in the FAQs vignette (vignette("faqs")
). - All documentation is also on the package’s website
Help Manual
Help page | Topics |
---|---|
Dog publications | dog_pubs |
Part-of-speech (POS) tags | pos_tags |
rbind a rakelist | rbind_rakelist |
Slow RAKE | slowrake |
SMART stop words | smart_words |